The correct option is D β=2
loga3=2, logb8=3
⇒a=√3, b=2
logab=log√32=log34
We know that,
log33<log34<log39
⇒1<log34<2
⇒[log34]=1
So, α=[logab]+1=[log34]+1=2
β is the integral part of log√2(√α+√α+√α+√α+⋯ upto ∞)
Let √α+√α+√α+√α+⋯=t
⇒√α+t=t
⇒t2−t−α=0
⇒t2−t−2=0 (∵α=2)
⇒t=2,−1
For log to be defined, t>0
So, t=2
log√2t=log√22=2
∴β=2