Let m and M be respectively the minimum and maximum values of
∣∣
∣
∣∣cos2x1+sin2xsin2x1+cos2xsin2xsin2xcos2xsin2x1+sin2x∣∣
∣
∣∣
Then the ordered pair (m,M) is equal to:
∣∣
∣
∣∣cos2x1+sin2xsin2x1+cos2xsin2xsin2xcos2xsin2x1+sin2x∣∣
∣
∣∣
R1→R1−R2,R3→R3−R2
∣∣
∣
∣∣−1101+cos2xsin2xsin2x−101∣∣
∣
∣∣
=−1(sin2x)−1(1+cos2x+sin2x)
=−sin2x−cos2x−1−sin2x
=−2−sin2x
∴ Minimum value when sin2x=1
m=−2−1=−3
∴ Maximum value when sin2x=−1
M=−2+1=−1
∴(m,M)=(−3,−1)