Let M be a 2 × 2 symmetric matrix with integer entries. Then M is invertible if
M is a diagonal matrix with nonzero entries in the main diagonal.
The product of entries in the main diagonal of M is not the square of an integer.
M=[akkb](A)[ak]=[kb]⇒a=k=b⇒|M|=0(B)[kb]=[ak]⇒k=a=b⇒|M|=0(C)M=[a00b]⇒|M|≠0(D)M=[akkb]⇒|M|=ab−k2≠0