The correct options are
B det(M)=1
C M2=I
D (adj M)2=I
Given, M−1=adj(adj M)
⇒|M−1|=|adj(adj M)|
⇒1|M|=|M|(n−1)2 (∵|adj(adj A)=|A|(n−1)2)
For n=3
1|M|=|M|4
⇒|M|5=1
⇒|M|=1 ⋯(1)
Now, M−1=adj(adj M)
⇒M−1=|M|3−2⋅M (∵adj(adj A)=|A|n−2⋅A)
⇒M−1=|M|⋅M
⇒M−1=M ⋯ [from equation (1)]
⇒M×M−1=M×M
⇒I=M2
or, M2=I
Now, multiply adj(M) both sides
adj(M)⋅M⋅M=adj(M)⋅I
Since A⋅adj(A)=|A|⋅I, we have
(|M|⋅I)⋅M=adj(M)
⇒I⋅M=adj(M) ⋯(∵|M|=1)
⇒M=adj(M)
Again, multiply adj(M)
M⋅adj(M)=(adj(M))2
⇒|M|⋅I=(adj(M))2
⇒I=(adj(M))2