(1+x)2+(1+x)3+...+(1+x)49+(1+mx)50
Coefficient of x2in the above expression=
2C2+ 3C2+ 4C2+…+ 49C2+ 50C2 m2=(3n+1) 51C3
3C3+ 3C2+ 4C2+…+ 49C2+ 50C2 m2=(3n+1) 51C3
As nCr+ nCr−1= n+1Cr
∴ 50C3+ 50C2 m2=(3n+1) 51C3⇒50C351C3+50C251C3m2=3n+1⇒1617+117m2=3n+1⇒m2=51n+1⇒n=m2−151=(m+1)(m−1)51
So, the numerator should be divisible by 17 and 3 for n to be a integer.
Smallest value of m for which n is an integer is, m=16 for which n=5