(1+x)2+(1+x)3+...+(1+x)49+(1+mx)50=(1+x)2[(1+x)48(1+x)−1]+(1+mx)50=1x[(1+x)50−(1+x)2)]+(1+mx)50coeff. of x2in the above expansion=coeff. of x3 in (1+x)50+Coeff. of x2in (1+mx)50⇒50C3+50C2m2∴(3n+1)51C3=50C3+50C2m2⇒(3n+1)=50C351C3+50C251C3m2⇒3n+1=1617+117m2⇒n=m2−151
Least positive integer m for which n is an interger is m=16 and then n=5