The correct option is C −2916
M=[sin4θ−1−sin2θ1+cos2θcos4θ]=αI+βM−1,M2=αM+βI
[sin4θ−1−sin2θ1+cos2θcos4θ][sin4θ−1−sin2θ1+cos2θcos4θ]=α[sin4θ−1−sin2θ1+cos2θcos4θ]+β[1001]
On comparing both sides we get,
⇒sin8θ−1−sin2θ−cos2θ−sin2θ⋅cos2θ=αsin4θ+β
⇒sin8θ−sin2θ⋅cos2θ−2=αsin4θ+β ...(i)
Also sin4θ(1+cos2θ)+cos4θ(1+cos2θ)=α(1+cos2θ)
⇒sin4θ(1+cos2θ)+cos4θ(1+cos2θ)(1+cos2θ)=α
α=sin4θ+cos4θ ...(ii)
α=1−12(sin2θ)2
α is minimum whensin2θ→1
∴α∗=αmin=1−12=12
solving (i) and (ii) we get,
β=−[sin4θ.cos4θ+sin2θ.cos2θ+2]β=−(t2+t+2), where t=sin22θ4∈[0,14]∴βmin=β∗=−3716
∴α∗+β∗=12−3716=−2916