f(x)=sin2x−4sinx+10⇒f(x)=(sinx−2)2+6
As sinx∈[−1,1], so the maximum value of f occurs at sinx=−1
M=15
g(x)=4sec2x+36 cosec2 x−14⇒g(x)=4+4tan2x+36+36cot2x−14⇒g(x)=4tan2x+36cot2x+26
Applying A.M. ≥ G.M., we get
4tan2x+36cot2x≥2√4×36⇒4tan2x+36cot2x≥24
So, the minimum value of g is m=24+26=50
Hence, m−M=50−15=35