Let m,n∈N and gcd(2,n)=1. If 30C030+29C130+…..+2C2830+1C2930=n.2m, then n+m is equal to
Finding the value of n+m
Given, gcd2,n=1 and 30C030+29C130+…..+2C2830+1C2930=n.2m
We know that,
30C030+29C130+…..+2C2830+1C2930=∑r=130rCr30⇒30C030+29C130+…..+2C2830+1C2930=∑r=130r30rCr-129[∵Crn=nr(Cr-1n-1)]⇒30C030+29C130+…..+2C2830+1C2930=30C029+C129+....+C2929[Puttingthevalueofr]⇒30C030+29C130+…..+2C2830+1C2930=30×229[∴C0n+C1n+C2n+C3n...Cnn=2n]⇒30C030+29C130+…..+2C2830+1C2930=15×230
Comparing the value, we get, n=15 and m=30.
Therefore, the value of n+m=15+30=45
For natural numbers m and n , if (1–y)m(1+y)n=1+a1y+a2y2+…...anda1=a2=10, then (m,n) is
If sin3xsin3x=∑m=0nCmcosmx where c0,c1,c2,………..cn are constants and Cn≠0, then the value of n is: