The correct options are
C Reflexive and symmetric relation.
D Transitive relation
(a,b)∈N×N(a,b)R(a,b) as ab=ba
Hence R is Reflexive relation.
If (a,b)R(c,d)⇒ad=bc
⇒cb=da
⇒(c,d)R(a,b)
Hence R is symmetric relation.
Let (a,b)R(c,d)⟺ad=bc⋯(1)
and (c,d)R(e,f)⟺cf=de⋯(2)
From (1) and (2)
Now af=be⇒(a,b)R(e,f)
∴(a,b)R(c,d),(c,d)R(e,f)⇒(a,b)R(e,f)
Hence R is Transitive relation.