The correct option is D Transitive relation
(a,b)∈N×N
(a,b)R(a,b) as ab=ba
Hence, R is reflexive relation.
If (a,b)R(c,d)⇒ad=bc
⇒cb=da
⇒(c,d)R(a,b)
Hence, R is symmetric relation.
Let (a,b)R(c,d)⟺ad=bc ⋯(1)
and (c,d)R(e,f)⟺cf=de ⋯(2)
From (1) and (2),
af=be⇒(a,b)R(e,f)
∴(a,b)R(c,d),(c,d)R(e,f)⇒(a,b)R(e,f)
Hence, R is transitive relation.