The correct option is A An equivalence relation
Given (a,b)R(c,d)⇔ad(b+c)=bc(a+d) where (a,b),(c,d)∈N×N
ad(b+c)=bc(a+d)
⇒b+cbc=a+dad
⇒1b+1c=1a+1d
∴(a,b)R(c,d)⇔1b+1c=1a+1d
As 1b+1a=1a+1b ∀ (a,b)∈N×N
So, (a,b)R(a,b)
∴R is reflexive relation.
If (a,b)R(c,d)⇒1b+1c=1a+1d
⇒1d+1a=1c+1b
⇒(c,d)R(a,b)
∴R is symmetric relation.
Let (a,b),(c,d),(e,f)∈N×N
Let (a,b)R(c,d) and (c,d)R(e,f) (a,b)R(c,d)⇒ad(b+c)=bc(a+d)
⇒1b+1c=1a+1d⋯(1)
(c,d)R(e,f)⇒cf(d+e)=de(c+f)
⇒1d+1e=1f+1c⋯(2)
(1)+(2)⇒(1b+1c+1d+1e)=(1a+1d+1f+1c)
1b+1e=1a+1f
⇒(a,b)R(e,f)
∴R is a Transitive relation.
Since R is Reflexive, Symmetric and Transitive relation.
∴R is an Equivalence relation.