We have, f:Z→Z,f(x)=ax2+bx+c
∵f(0)=2
⇒a.0+b.0+c=2⇒c=2
∵f(1)=6
⇒a.(1)2+b.(1)+c=6⇒a+b+c=6
⇒a+b+2=6⇒a+b=4 .............(1)
∵f(2)=12
⇒a.(2)2+b.(2)+c=12
⇒4a+2b+c=12⇒4a+2b=12−2=10
⇒2(2a+b)=10⇒2a+b=5 .........(2)
Now, from eqn(2)−(1), we get
(2a+b)−(a+b)=5−4⇒a=1
Put a=1 in equation (1), we get
1+b=4⇒b=4−1=3
Putting value of a,b,c in f(x)=ax2+bx+c, we get
⇒f(x)=1.x2+3.x+2
⇒f(x)=x2+3x+2
Now, f(−1)=(−1)2+3.(−1)+2
⇒f(−1)=1−3+2=0
Hence, f(−1)=0