The correct option is B 12
A={x∈Z:x2−8x+12x2+8x+17≤0}
Now, x2−8x+12x2+8x+17≤0
Since, x2+8x+17>0 as D<0
⇒x2−8x+12≤0
⇒(x−2)(x−6)≤0
⇒x∈[2,6]
⇒A={2,3,4,5,6}
B={x∈Z:||3x−5|+4|≤8}
⇒||3x−5|+4|≤8
⇒−8≤|3x−5|+4≤8
⇒−12≤|3x−5|≤4
Since, |3x−5| is always greater than or equal to 0.
∴|3x−5|≤4
⇒−4≤3x−5≤4
⇒13≤x≤3
⇒B={1,2,3}
A∪B={1,2,3,4,5,6}
⇒n(A∪B)=6
A∩B={2,3}
⇒n(A∩B)=2
n[(A∪B)×(A∩B)]
=n(A∪B)×n(A∩B)
=6×2=12