The correct option is A (−π2,π2)
Let x=tanθ
f(x)=tan−1(2tanθ1−tan2θ)
=tan−1(tan2θ)
=2θ
=2tan−1x
Now f:(−1,1)→B
−1=tanθ
θ=−π4
Also 1=tanθ
θ=π4
Therefore θ∈(−π4,π4)
2θ∈(−π2,π2)
2tan−1(x)∈(−π2,π2)
f(x)∈(−π2,π2)
Therefore f:(−1,1)→(−π2,π2)
Hence B=(−π2,π2)