Let f(x) be a function satisfying f(x+y)=f(x)f(y) for all x,y ∈R and f(x)=1+xg(x), where limx→0g(x)=1, then f′(x) is equal to
f′(x)=limh→0f(x+h)−f(x)h
=limh→0f(x)f(h)−f(x)h
=f(x)limh→0f(h)−1h
=f(x)limh→0g(h), (∵f(x)=1+xg(x))
=f(x) (∵limx→0g(x)=1)
⇒f′(x)=f(x)