wiz-icon
MyQuestionIcon
MyQuestionIcon
10
You visited us 10 times! Enjoying our articles? Unlock Full Access!
Question

Let f(sinx)<0 and f′′(sinx)>0x(0,π2) and g(x)=f(sinx)+f(cosx) , then

A
g(x) increases if x(0,π4)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
g(x) decreases if x(0,π4)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
g(x) increases if x(π4,π2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
g(x) increases if x(0,π2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
B g(x) decreases if x(0,π4)
C g(x) increases if x(π4,π2)
g(x)=f(sinx)+f(cosx)
g(x)=f(sinx)cosx+f(cosx)(sinx)
g(x)=cosxf(sinx)sinxf(cosx)
g(x)=cosxf(sinx)sinxf(sin(π2x))
g′′(x)=sinxf(sinx)+cos2xf′′(sinx)cosxf(cosx)+sinxf′′(cosx)
f(sinx)<0 for all x(0,π2)
And sinx>0,cosx>0x(0,π2)
So, g''(x) >0
g'(x) is increasing in $(0,\displaystyle \frac{\pi}{2} )$
Now , put g'(x)=0
x=π4
f(sinx)<0 for all x(0,π2)
f(sinx)<0 for all x(0,π4)
Also, cosx>sinx for x(0,π4)
Hence, g'(x)<0 ,for x(0,π4)

Also , sinx>cosx for x(π4,π2)
Hence, g'(x)>0 for x(π4,π2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Applications of Cross Product
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon