The correct options are
B g(x) decreases if x∈(0,π4)
C g(x) increases if x∈(π4,π2)
g(x)=f(sinx)+f(cosx)
g′(x)=f′(sinx)cosx+f′(cosx)(−sinx)
g′(x)=cosxf′(sinx)−sinxf′(cosx)
g′(x)=cosxf′(sinx)−sinxf′(sin(π2−x))
g′′(x)=−sinxf′(sinx)+cos2xf′′(sinx)−cosxf′(cosx)+sinxf′′(cosx)
f′(sinx)<0 for all x∈(0,π2)
And sinx>0,cosx>0∀x∈(0,π2)
So, g''(x) >0
⇒ g'(x) is increasing in $(0,\displaystyle \frac{\pi}{2} )$
Now , put g'(x)=0
⇒x=π4
f′(sinx)<0 for all x∈(0,π2)
⇒f′(sinx)<0 for all x∈(0,π4)
Also, cosx>sinx for x∈(0,π4)
Hence, g'(x)<0 ,for x∈(0,π4)
Also , sinx>cosx for x∈(π4,π2)
Hence, g'(x)>0 for x∈(π4,π2)