Let f(x) be a function defined on R such that f(1)=2,f(2)=8 and f(u+v)=f(u)+kuv−2v2 for u,v∈ R (k is a fixed constant), then?
Given,
f(x+h)=f(x)+kxh−2h2
⇒limh→0f(x+h)−f(x)h=limh→0(kx−2h)
⇒f′(x)=kx
⇒f(x)=kx22+c ..... [By integrating]
⇒f(1)=k2+c
⇒2=k2+c...(i)
Also, f(2)=2k+c
⇒8=2k+c...(ii)
From (i) and (ii), we get
k=4 & c=0
Then, f(x)=2x2
⇒f′(x)=4x
Hence, option 'B' is correct.