Let g(x)=log(f(x)) where f(x) is a twice differentiable positive function on (0,∞) such that f(x+1)=xf(x) . Then, for N=1,2,3,…g′′(N+12)−g′′(12)=
A
−4(1+19+125+…+1(2N−1)2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
4(1+19+125+…+1(2N−1)2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−4(1+19+125+…+1(2N+1)2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4(1+19+125+…+1(2N+1)2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−4(1+19+125+…+1(2N−1)2) g(x+l)=log(f(x+1))=logx+log(f(x)) =logx+g(x) ⇒g(x+1)−g(x)=logx ⇒g′′(x+1)−g′′(x)=−1x2 g′′(1+12)−g′′(12)=−4 g′′(2+12)−g′′(1+12)=−49 g′′(N+12)−g′(N+12)=−4(2N−1)2 Summing up all terms Hence, g′′(N+12)−g′′(12)=−4(1+19+⋯+1(2N−1)2)