The correct option is
B 26Let us assume that
P(x)=a(x−2)4+b(x−2)3+c(x−2)2+d(x−2)+e ...(1)
Differentiating both sides of (1); w.r.t. x, we get
P′(x)=4a(x−2)3+3b(x−2)2+2c(x−2)+d ...(2)
Putting x=2; we get
P′(2)=d⇒d=0
Differentiating both sides of (2) w.r.t. x, we get
P′′(x)=12a(x−2)2=6b(x−2)+2c ...(3)
Putting x=2, we get
P′′(2)=2c⇒2c=2⇒c=1
Again differentiating (3) w.r.t x, we get
P′′′(x)=24a(x−2)+6b ...(4)
Putting x=2, we get
P′′′(2)=6b⇒−12=6b⇒b=−2
Differentiating both sides of (4) w.r.t x, we get
P′′′′(x)=24a
Putting x=2, we get
P′′′′(2)=24a⇒24=24a⇒a=1
Now, substituting this values of a,b,c,d,e, in (3)
P′′(x)=12(1)(x−2)2+6(−2)(x−2)+2×(1)
∴P′′(1)=12(1−2)2−12(1−2)+2
=12+12+2=26