Let I=∫10x50(1−x102)50 dx
x51=t⇒51x50 dx=dt
I=∫10(1−t2)50.dt51
I=151∫10(1−t)50(1+t)50 dt
I=151∫10t50(2−t)50 dt [∴∫baf(x) dx=∫baf(a+b−x)dx]
t=2Z
I=251∫120250250z50(1−z)50. dz
I=210151∫120250(1−z)50. dz
So N=2101×2∫120x50(1−x)50 dx(210151)∫120250(1−z)50 dz(∫2a0f(x)dx=2∫a0f(x)if f(x)=f(2a−x))
N =102
So N=2×3×17
So N can be resolved into two factors which are relatively prime is 2×2×22=4