Let n and k be positive integers such that n≥k(k+1)2. Find the number of solutions (x1,x2,...,xk),x1≥1,x2≥2,xk≥k all integers satisfying x1+x2+...+xk=n.Assume k=5 and n=15 .
Open in App
Solution
We have x1+x2+...+xk=n...(1) Now let y1=x1−1,y2=x2−2,...,yk=xk−k ∴y1≥0,y2≥0,....,yk≥0 Substituting the values x1,x2,...,xk in terms of y1,y2,...,yk in (1), we have y1+1+y2+2+...+yk+k=n ⇒y1+y2+...+yk=n−(1+2+3+...+k) ∴y1+y2+...+yk=n−k(k+1)2=A(say)...(2) The number of non-negative integral solutions of the equation (2) is k+A−1CA=(k+A−1)!A!(k−1)! where A=n−k(k−1)2
Substituting values of n and k, we get the required number as 126