Let n be a positive integer such that sinπ2n+cosπ2n=√n2 , then
sin(π2n)+cos(π2n)=√n2, n≥0
Squaring on both sides,
sin2(π2n)+cos2(π2n)+sin(2π2n)=n4
1+sin(π2n−1)=n4
sin(π2n−1)=n−44 0<n−44≤1
0<n−4≤4
⇒4<n≤8
Let n be positive integer such that sinπ2n+cosπ2n=√n2. Then
Let n be a positive integer such that sinπ2n+cosπ2n=√n2. Then