Let n be a positive integer such that sin π2n + cos π2n = √n2. Then
(b) sin π2n + cos π2n = √n2
⇒ √2 (sinπ2n.cosπ4+cosπ2n.sinπ4) = √n2
⇒ √2 sin(π4+π2n) = √n2
Since sin(π4+π2n) ≤ 1
∴ √n2 ≤ √2 ⇒ √2 ≤ 2√2 ⇒ n ≤ 8 .
Again √n2 = √2 sin(π4+π2n) > √2.1√2 = 1
(∵sin(π4+π2n)sinπ4)
∴ n > 4, Hence, 4 < n ≤ 8.