Let n be a positive integer such that sinπ2n+cosπ2n=√n2. Then
4 < n≤8
sinπ2n+cosπ2n=√n2⇒√2(sinπ2n.cosπ4+cosπ2n.sinπ4)=√n2⇒√2 sin(π4+π2n)=√n2
Since sin(π4+π2n)≤1∴√n2≤√2⇒√n≤2√2⇒n≤8.Again √n2=√2 sin(π4+π2n)>√2.1√2=1(∵sin (π4+π2n)> sinπ4)
∴ n > 4, Hence, 4 < n ≤ 8