The correct option is A A=N
fn=(n+1)1/3−n1/3⇒fn=1(n+1)2/3+n2/3+n1/3(n+1)1/3
Now, For all n∈N
n2/3<(n+1)2/3
n1/3(n+1)1/3<(n+1)2/3
⇒(n+1)2/3+n2/3+n1/3(n+1)1/3<3(n+1)2/3⇒1(n+1)2/3+n2/3+n1/3(n+1)1/3>13(n+1)2/3⇒fn>13(n+1)2/3....(1)
Moreover, For all n∈N
(n+2)2/3>(n+1)2/3
(n+2)1/3(n+1)1/3>(n+1)2/3
⇒(n+2)2/3+(n+1)2/3+(n+1)1/3(n+2)1/3>3(n+1)2/3⇒1(n+2)2/3+(n+1)2/3+(n+1)1/3(n+2)1/3<13(n+1)2/3⇒fn+1<13(n+1)2/3....(2)
From equation (1) and (2),
fn+1<13(n+1)2/3<fn, ∀ n∈N