wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let N denote the set of all natural numbers and R a relation on N×N. Which of the following is an equivalence relation?

A
(a,b)R(c,d) if ad(b+c)=bc(a+d)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(a,b)R(c,d) if a+d=b+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(a,b)R(c,d) if ad=bc
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
All the above
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D All the above
Given: N denote the set of natural numbers and R a reation on N×N
A) (a,b)R(c,d) id ad(b+c)=bc(a+d)
B) (a,b)R(c,d) if (a+d)=(b+c)
C) (a,b)R(c,d) if ad=bc.

Consider A (a,b)R(c,d) if ad(b+c)=bc(a+d)
1) Reflexive
Let (a+b)N×N
and (a,b)R(a,b)
ab(b+a)=ba(a+b)
ab(b+a)=ab(b+a)
R is reflective .....(I)

2) Symmetric
Let (a,b)R(c,d)
where (a,v)&(c,d)N
ad(b+c)=bc(a+d)
=bc(a+d)=ad(b+c)
cb(d+a)=da(c+b)
(c,d)R(a,b)
R is symmetric ...(II)

3) Transitive
Let (a,b),(c,d) and (c,f)N×N
consider,
(a,b)R(c,d)
ad(b+c)=bc(a+d)
abd+adc=abc+bcd
abdabc=bcdadc
ab(dc)=dc(ba)
ab(ba)=cddc ...(1)
Now, consider,
(c,d)R(e,f)
cf(d+e)=dc(e+f)
cfd+cef=ced+edf
cfdced=edf+cef
cd(fe)=ef(dc)
cddc=effe ....(2)
from (1) and (2)
abbc=cffe
ab(fe)=ef(ba)
abfabe=efbefa
abf+efa=efb+abe
af(b+e)=be(f+a)
(a,b)R(e,f) (by definition of R)
R is trasitive .....(III)
from (I), (II) and (III)
R is on equivalence Relation or N×N.

Consider B (a,b)R(c,d) if (a+d)=(b+c)
1) Reflexive
Let (a+b)N×N
and (a,b)R(a,b)
(a+b)=(b+a)
(a+b)=(a+b)
R is reflective .....(IV)

2) Symmetric
Let (a,b)R(c,d)
where (a,b)&(c,d)N×N
(a+d)=(b+c)
(b+c)=(a+d)
(c+b)=(d+a)
(c,d)R(a,b)
R is symmetric ...(V)

3) Transitive
Let (a,b),(c,d) and (c,f)N×N
If (a,b)&(c,d) and (c,d)&(c,f)
then (a,b)R(c,f)
consider,
(a,b)R(c,d)
(a+d)=(b+c) by definition by R
ab=cd ....(3)
Now,
(c,d)R(e,f)
(c+f)=(d+e) by definition of x
cd+ef ...(4)
from (3) and (4)
ab=ef
a+f=e+b
(a,b)R(e,f)
R is transitive ...(VI)
from (IV), (V), (VI) we have,
R is an equivalence reaction.abf+efa=efb+abe
af(b+e)=be(f+a)
(a,b)R(e,f) (by definition of R)
R is trasitive .....(III)
from (I), (II) and (III)
R is on equivalence Relation or N×N.

Consider C (a,b)R(c,d) if ad=bc
1) Reflexive
Let (a,b)N×N
and (a,b)R(a,b)
ab=ba
ab=ab
R is reflective .....(VII)

2) Symmetric
Let (a,b)R(c,d) where (a,b),(c,d)N×N
ad=bc
bc=ad
cb=da
(c,d)R(a,b)
R is symmetric ...(VIII)

3) Transitive
Let (a,b),(c,d) and (c,f) \in N \times N$
If (a,b)R(c,d) and (c,d)R(c,f)
then (a,b)R(c,f)
consider,
(a,b)R(c,d)
ad=bc by definition by R
ab=cd ....(5)
Consider,
(c,d)R(e,f)
(cf)=(de) by definition of R
cd=ef ...(6)
from (5) and (6) we have,
ab=ef
R is transitive ...(IX)
from (VII), (VIII), (IX) we have,
R is an equivalence reaction.
A,B,C all are equivalence relation.
option all of the above is correct answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Types of Relations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon