The correct option is
D All the above
Given: N denote the set of natural numbers and R a reation on N×NA) (a,b)R(c,d) id ad(b+c)=bc(a+d)
B) (a,b)R(c,d) if (a+d)=(b+c)
C) (a,b)R(c,d) if ad=bc.
Consider A (a,b)R(c,d) if ad(b+c)=bc(a+d)
1) Reflexive
Let (a+b)∈N×N
and (a,b)R(a,b)
⇒ab(b+a)=ba(a+b)
⇒ab(b+a)=ab(b+a)
⇒R is reflective .....(I)
2) Symmetric
Let (a,b)R(c,d)
where (a,v)&(c,d)∈N
⇒ad(b+c)=bc(a+d)
=bc(a+d)=ad(b+c)
⇒cb(d+a)=da(c+b)
⇒(c,d)R(a,b)
⇒R is symmetric ...(II)
3) Transitive
Let (a,b),(c,d) and (c,f)∈N×N
consider,
(a,b)R(c,d)
⇒ad(b+c)=bc(a+d)
⇒abd+adc=abc+bcd
⇒abd−abc=bcd−adc
⇒ab(d−c)=dc(b−a)
⇒ab(b−a)=cdd−c ...(1)
Now, consider,
(c,d)R(e,f)
⇒cf(d+e)=dc(e+f)
⇒cfd+cef=ced+edf
⇒cfd−ced=edf+cef
⇒cd(fe)=ef(d−c)
⇒cdd−c=eff−e ....(2)
from (1) and (2)
abb−c=cff−e
⇒ab(f−e)=ef(b−a)
⇒abf−abe=efb−efa
⇒abf+efa=efb+abe
⇒af(b+e)=be(f+a)
⇒(a,b)R(e,f) (by definition of R)
⇒R is trasitive .....(III)
from (I), (II) and (III)
R is on equivalence Relation or N×N.
Consider B (a,b)R(c,d) if (a+d)=(b+c)
1) Reflexive
Let (a+b)∈N×N
and (a,b)R(a,b)
⇒(a+b)=(b+a)
⇒(a+b)=(a+b)
⇒R is reflective .....(IV)
2) Symmetric
Let (a,b)R(c,d)
where (a,b)&(c,d)∈N×N
⇒(a+d)=(b+c)
⇒(b+c)=(a+d)
⇒(c+b)=(d+a)
⇒(c,d)R(a,b)
⇒R is symmetric ...(V)
3) Transitive
Let (a,b),(c,d) and (c,f)∈N×N
If (a,b)&(c,d) and (c,d)&(c,f)
then (a,b)R(c,f)
consider,
(a,b)R(c,d)
⇒(a+d)=(b+c) by definition by R
⇒a−b=c−d ....(3)
Now,
(c,d)R(e,f)
⇒(c+f)=(d+e) by definition of x
⇒c−d+e−f ...(4)
from (3) and (4)
a−b=e−f
⇒a+f=e+b
⇒(a,b)R(e,f)
⇒R is transitive ...(VI)
from (IV), (V), (VI) we have,
R is an equivalence reaction.⇒abf+efa=efb+abe
⇒af(b+e)=be(f+a)
⇒(a,b)R(e,f) (by definition of R)
⇒R is trasitive .....(III)
from (I), (II) and (III)
R is on equivalence Relation or N×N.
Consider C (a,b)R(c,d) if ad=bc
1) Reflexive
Let (a,b)∈N×N
and (a,b)R(a,b)
⇒ab=ba
⇒ab=ab
⇒R is reflective .....(VII)
2) Symmetric
Let (a,b)R(c,d) where (a,b),(c,d)∈N×N
⇒ad=bc
⇒bc=ad
⇒cb=da
⇒(c,d)R(a,b)
⇒R is symmetric ...(VIII)
3) Transitive
Let (a,b),(c,d) and (c,f) \in N \times N$
If (a,b)R(c,d) and (c,d)R(c,f)
then (a,b)R(c,f)
consider,
(a,b)R(c,d)
⇒ad=bc by definition by R
⇒ab=cd ....(5)
Consider,
(c,d)R(e,f)
⇒(cf)=(de) by definition of R
⇒cd=ef ...(6)
from (5) and (6) we have,
ab=ef
⇒R is transitive ...(IX)
from (VII), (VIII), (IX) we have,
R is an equivalence reaction.
⇒A,B,C all are equivalence relation.
∴ option all of the above is correct answer.