∴(a,b)R(a,b)⇒R is reflexive.
Symmetric: For (a,b),(c,d)∈N×N, let (a,b)R(c,d)
∴ad(b+c)=bc(a+d)⇒bc(a+d)=ad(b+c)
⇒cb(d+a)=da(c+b)⇒(c,d)R(a,b)
∴ R is symmetric
Transitive: For (a,b),(c,d),(e,f)∈N×N
Let (a,b)R(c,d),(c,d)R(e,f)
∴ad(b+c)=bc(a+d),cf(d+e)=de(c+f)
⇒adb+adc=bca+bcd......(i)
and cfd+cfe=dec+def.......(ii)
(i)×ef+(ii)×ab gives,
adbef+adcef+cfdab+cefab
=bcaef+bcdef+decab+defab
⇒adcf(b+e)=bcde(a+f)
⇒af(b+e)=be(a+f)
⇒(a,b)R(e,f)
∴R is transitive.
Hence R is an equivalence relation