(a,b)R(c,d)⇔ad(b+c)=bc(a+d)ab(b+a)=ba(a+b)⇒(a,b)R(a,b)
Thus, the given relation is reflexive
(a,b)R(c,d)⇒ad(b+c)=bc(a+d)ad(b+c)=bc(a+d)⇒cb(d+a)=da(c+b)⇒(c,d)R(a,b)∴(a,b)R(c,d)⇒(c,d)R(a,b)
Thus, the given relation is symmetric
(a,b)R(c,d)⇔ad(b+c)=bc(a+d)⇒1b+1c=1a+1d.....(1)(c,d)R(e,f)⇔cf(d+e)=de(c+f)⇒1f+1c=1e+1d....(2)(2)−(1)⇒1f−1b=1e−1a⇒1f+1a=1e+1b⇒af(b+e)=be(a+f)⇒(a,b)R(e,f)∴(a,b)R(c,d)&(c,d)R(e,f)⇒(a,b)R(e,f)
Thus, the given relation is transitive.
Thus, the given relation is an equivalence relation.