Let R be defined on N×N as
(a,b)R(c,d)⟺ad(b+c)=bc(a+d). ....(1)
Reflexivity:
We can write ab(b+a)=ba(a+b) for all a,b∈N
Since, sum and product of natural numbers obeys commutative property
Hence, by def (1), we can write
(a,b)R(a,b) for all (a,b)∈N×N
Hence, R is reflexive.
Symmmetry :
Let (a,b)R(c,d)
⇒ad(b+c)=bc(a+d)
⇒da(c+b)=cb(d+a) (Since, sum and product of natural numbers obeys commutative property)
or cb(d+a)=da(c+b)
⇒(c,d)R(a,b)
Hence, R is symmetric
Transitivity :
Let (a,b),(c,d),(e,f)∈N×N
Let (a,b)R(c,d) and (c,d)R(e,f)
ad(b+c)=bc(a+d) and cf(d+e)=de(c+f)
⇒aba−b=cdc−d and cdc−d=efe−f
⇒aba−b=efe−f
⇒af(b+e)=be(a+f)
⇒(a,b)R(e,f)
Hence ,R is transitive
∴R is Equivalence Relation.