wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let n2 be an integer,


A=⎢ ⎢ ⎢ ⎢ ⎢ ⎢cos(2πn)sin(2πn)0sin(2πn)cos(2πn)0001⎥ ⎥ ⎥ ⎥ ⎥ ⎥ and I is the identity matrix of order 3., then following of which is correct

A
An=I and An1I
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
AmI for any positive integer m
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
A is not invertible
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Am=0 for a positive integer m
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A An=I and An1I
Given,
A=⎢ ⎢ ⎢ ⎢ ⎢ ⎢cos(2πn)sin(2πn)0sin(2πn)cos(2πn)0001⎥ ⎥ ⎥ ⎥ ⎥ ⎥

Now,
A×A=⎢ ⎢ ⎢ ⎢ ⎢ ⎢cos(2πn)sin(2πn)0sin(2πn)cos(2πn)0001⎥ ⎥ ⎥ ⎥ ⎥ ⎥×⎢ ⎢ ⎢ ⎢ ⎢ ⎢cos(2πn)sin(2πn)0sin(2πn)cos(2πn)0001⎥ ⎥ ⎥ ⎥ ⎥ ⎥

=⎢ ⎢ ⎢ ⎢ ⎢ ⎢cos2(2πn)sin2(2πn)cos(2πn)sin(2πn)+sin(2πn)cos(2πn)0sin(2πn)cos(2πn)sin(2πn)cos(2πn)sin2(2πn)+cos2(2πn)0001⎥ ⎥ ⎥ ⎥ ⎥ ⎥

=⎢ ⎢ ⎢ ⎢ ⎢ ⎢cos(2×2πn)2sin(2πn)cos(2πn)02sin(2πn)cos(2πn)cos(2×2πn)0001⎥ ⎥ ⎥ ⎥ ⎥ ⎥

=⎢ ⎢ ⎢ ⎢ ⎢ ⎢cos(2×2πn)sin(2×2πn)0sin(2×2πn)cos(2×2πn)0001⎥ ⎥ ⎥ ⎥ ⎥ ⎥

Similarly,

An=⎢ ⎢ ⎢ ⎢ ⎢ ⎢cos(2n1×2πn)sin(2n1×2πn)0sin(2n1×2πn)cos(2n1×2πn)0001⎥ ⎥ ⎥ ⎥ ⎥ ⎥

=100010001=I

and

An1=⎢ ⎢ ⎢ ⎢ ⎢ ⎢cos(2n2×2πn)sin(2n2×2πn)0sin(2n2×2πn)cos(2n2×2πn)0001⎥ ⎥ ⎥ ⎥ ⎥ ⎥

I

An1I for any positive integer n.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon