Let n>1 be a positive integer, then find the largest integer m such that (nm + 1) divides 1+n+n2 + ......+ n127.
Since nm + 1 divides 1+n+n2 + ......+ n127
Therefore 1+n+n2+........+n127nm+1 is an integer
⇒ 1−n1281−n × 1nm+1 is an integer
⇒ (1−n64)(1+n64)(1−n)(nm+1)
is an integer when m = 64.