Let n∈N and n < (5√3+8)4. Then the greatest value of n is
A
77040
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
77042
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
77041
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C77041 Suppose x=(5√3+8)4 ={x}+{x} 0 < 5√3−8 < 1 0 < (5√3−8)4 Let F=(5√3−8)4 0 < F < 1 [x]+x+F=(5√3+8)4+(5√3−8)4 =4C0(5√3)4+4C1(5√3)3(8)+...+(4C0(5√3)4−4C1(5√3)3(8)+...)=2.[C0(5√3)4+C2(8)2(5√3)2+C4(8)4]=2[625(9)+(6)64(25)(3)+(64)(64)]=2[5625+28800+4096]=77042 {x}+F must be an integer Also 0 < {x}+F < 2 ⇒x+f=1 ⇒[x]=77042−1=77041