Let n∈N,Sn=3n∑r=03nCr and Tn=n∑r=03nC3r, then 9|Sn–3Tn| is equal to
Open in App
Solution
Sn=3nC0+3nC1+...+3nC3n=23n Tn=3nC0+3nC3+...+3nC3n (1+x)3n=(3nC0+3nC3x3+...) +x(3nC1+3nC4x3+...)+x2(3nC2+3nC2x5+....)
Put x=1,ω,ω2, we get ⇒23n+(–ω2)3n+(−ω)3n=3[3nC0+3nC3+....] ⇒23n+(–1)3n[ω6n+ω3n]=3[3nC0+3nC3+....] =3Tn ⇒|Sn−3Tn|=2