Let n is of the form of 3P where P is an odd integer then
nC0 + nC3 + nC6 + nC9 + ........ + nCn equals
(1+x)n=c0+c1X+c2X2+........+cnXn
(1+ω)n=c0+c1ω+c2ω2+........+cnωn
(1+ω2)n=c0+c1ω2+c2ω4+........+cnω2n
2n=c0+c1+c2+.....+cn
2n+(−ω)n+(−ω2)n=3c0+3c3+....+3nCn
c0+c3+c6+......+cn=13[26n+(−1)nωn+(−1)nω2n]
= 13[2n+(−1)3Pω3P+(−1)3Pω6P]
= 13[2n−1−1]=13[2n−2]