Let normal at point P(1,2) on the curve xy=2 meets the curve again at point Q, then the value of 4PQ25=
Open in App
Solution
Let the point Q≡(t,2t)
For slope of tangent , y=2x ⇒dydx=−2x2 ⇒(dydx)(1,2)=−2 ⇒slope of normal =−1slope of tangent ⇒ slope of normal =12=slope of PQ ⇒12=2t−2t−1 ⇒t2+3t−4=0 ⇒(t+4)(t−1)=0 ⇒t=−4,1 ∴Q≡(−4,−12),p≡(1,2) PQ2=1254 ∴4PQ25=25