∠OCB=C−ω and
∠BOC=1800−ω−(C=ω)=1800−C.
Similarly ∠AOB=1800−B.
Now from △AOB, we have
OBsinω=ABsin(1800−B)=csinB
so that OB=csinωsinB ..........(1)
Again from △OBC, we get
OBsin(C−ω)=BCsin(1800−c)=csinC
∴OB=asin(C−ω)sinC ........(2)
From (1) and (2), we get
csinωsinB=asin(C−ω)sinC
or KsinCsinωsinC=ksinAsinBsin(C−ω)
or sinCsinωsin(A+B)=sinAsinBsin(C−ω)
or sinCsinωsinAcosB+sinCsinωcosAsinB
=sinasinBsinCcosω−sinAsinBsinCsinω
Dividing by sinAsinBsinCsinω, we get
cotB+cotA=cotω−cotC
or cotω=cotA+cotB+cotC
Squaring,
cot2ω=cot2A+cot2B+cot2C+2cotAcotB+2cotBcotC+2cotCcotA
or cosec2ω−1=cosec2A−cosec2B−1+cosec2C−1+2
[∵ in a △, cot A cotB+ cot B cot C + cot C cot A =1]
or cosec2ω=cosec2A+cosec2B+cosec2C.