wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let O be a point inside a triangle ABC such that
OAB=OBC=OCA=ω,
then show that
(a) cotω=cotA+cotB+cotC.
(b) cosec2ω=cosec2A+cosec2B+cosec2C.

Open in App
Solution

OCB=Cω and
BOC=1800ω(C=ω)=1800C.
Similarly AOB=1800B.
Now from AOB, we have
OBsinω=ABsin(1800B)=csinB
so that OB=csinωsinB ..........(1)
Again from OBC, we get
OBsin(Cω)=BCsin(1800c)=csinC
OB=asin(Cω)sinC ........(2)
From (1) and (2), we get
csinωsinB=asin(Cω)sinC
or KsinCsinωsinC=ksinAsinBsin(Cω)
or sinCsinωsin(A+B)=sinAsinBsin(Cω)
or sinCsinωsinAcosB+sinCsinωcosAsinB
=sinasinBsinCcosωsinAsinBsinCsinω
Dividing by sinAsinBsinCsinω, we get
cotB+cotA=cotωcotC
or cotω=cotA+cotB+cotC
Squaring,
cot2ω=cot2A+cot2B+cot2C+2cotAcotB+2cotBcotC+2cotCcotA
or cosec2ω1=cosec2Acosec2B1+cosec2C1+2
[ in a , cot A cotB+ cot B cot C + cot C cot A =1]
or cosec2ω=cosec2A+cosec2B+cosec2C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon