The correct option is
C 2Refer to the figure. Let O be the origin.
Let ¯OA=¯a
¯OB=¯b
¯OC=¯c
Given, ¯OA+2¯OB+3¯OC=0
∴¯a+2¯b+3¯c=0
∴¯a=−2¯b−3¯c (1)
1) Area of triangle ABC is given by,
A(△ABC)=12∣∣¯ABׯBC∣∣
∴A(△ABC)=12∣∣(¯b−¯a)×(¯c−¯b)∣∣
From equation (1),
A(△ABC)=12∣∣(¯b−(−2¯b−3¯c))×(¯c−¯b)∣∣
A(△ABC)=12∣∣(¯b+2¯b+3¯c)×(¯c−¯b)∣∣
A(△ABC)=12∣∣(3¯b+3¯c)×(¯c−¯b)∣∣
∴A(△ABC)=32∣∣(¯b+¯c)×(¯c−¯b)∣∣
∴A(△ABC)=32∣∣(¯bׯc)−(¯bׯb)+(¯cׯc)−(¯cׯb)∣∣
But, ¯bׯb=0 and ¯cׯc=0
∴A(△ABC)=32∣∣(¯bׯc)−(¯cׯb)∣∣
∴A(△ABC)=32∣∣(¯bׯc)+(¯bׯc)∣∣
(∵(¯aׯb)=−(¯bׯa))
∴A(△ABC)=32∣∣2(¯bׯc)∣∣
∴A(△ABC)=3∣∣(¯bׯc)∣∣ (2)
2) Area of triangle AOC is given by,
∴(△AOC)=12∣∣¯OAׯOC∣∣
∴(△AOC)=12|¯aׯc|
From equation (1),
A(△AOC)=12∣∣(−2¯b−3¯c)ׯc∣∣
∴A(△AOC)=12∣∣−2(¯bׯc)−3(¯cׯc)∣∣
∴A(△AOC)=22∣∣(¯bׯc)∣∣
∴A(△AOC)=∣∣(¯bׯc)∣∣ (3)
Now, A(△ABC)A(△AOC)=3∣∣(¯bׯc)∣∣∣∣(¯bׯc)∣∣
A(△ABC)A(△AOC)=3