wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let O be an interior point of ABC such that ¯¯¯¯¯¯¯¯OA+2¯¯¯¯¯¯¯¯AB+3¯¯¯¯¯¯¯¯OC=¯¯¯¯O, then the ratio of ABC to area of AOC is

A
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
52
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 2
Refer to the figure. Let O be the origin.
Let ¯OA=¯a
¯OB=¯b
¯OC=¯c

Given, ¯OA+2¯OB+3¯OC=0

¯a+2¯b+3¯c=0

¯a=2¯b3¯c (1)

1) Area of triangle ABC is given by,
A(ABC)=12¯ABׯBC

A(ABC)=12(¯b¯a)×(¯c¯b)

From equation (1),

A(ABC)=12(¯b(2¯b3¯c))×(¯c¯b)

A(ABC)=12(¯b+2¯b+3¯c)×(¯c¯b)

A(ABC)=12(3¯b+3¯c)×(¯c¯b)

A(ABC)=32(¯b+¯c)×(¯c¯b)

A(ABC)=32(¯bׯc)(¯bׯb)+(¯cׯc)(¯cׯb)

But, ¯bׯb=0 and ¯cׯc=0

A(ABC)=32(¯bׯc)(¯cׯb)

A(ABC)=32(¯bׯc)+(¯bׯc)
((¯aׯb)=(¯bׯa))

A(ABC)=322(¯bׯc)

A(ABC)=3(¯bׯc) (2)

2) Area of triangle AOC is given by,
(AOC)=12¯OAׯOC

(AOC)=12|¯aׯc|

From equation (1),
A(AOC)=12(2¯b3¯c)ׯc

A(AOC)=122(¯bׯc)3(¯cׯc)

A(AOC)=22(¯bׯc)

A(AOC)=(¯bׯc) (3)

Now, A(ABC)A(AOC)=3(¯bׯc)(¯bׯc)

A(ABC)A(AOC)=3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Vector Addition
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon