Let O=(0,0),A=(a,11),B=(b,37) are the vertices of an equilateral triangle OAB, then a and b satisfy the relation
A
(a2+b2)−4ab=138
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(a2+b2)−ab=124
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(a2+b2)+3ab=130
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(a2+b2)−3ab=138
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B(a2+b2)−4ab=138 Let C is the middle point of side AB ∴ Coordinate of C≡(a+b2,11+372) C≡(a+b2,24) ∵OAB is an equilateral triangle ∴OC=√3CA⇒(OC)2=(√3CA)2 (By squaring both side) ⇒(OC)2=3(CA)2 ⇒(a+b2−0)2+(24−0)2=3[(a−a+b2)2+(11−24)2] ⇒a2+b2+2ab4+576=3[(a−b2−0)2+(−13)2]⇒a2+b2−4ab=138