Let ω be a complex cube root of unity with ω≠0 and P=[pij] be an n×n matrix with Pij=ωi+j. Then P2=0 when n is equal to
57
Here Pijn×n with pij=ωi+j
∴ When n = 1
P=[pij]1×1=[ω2]⇒ P2=[ω4]≠0
∴ When n = 2
P=[pij]2×2=[P11P12P21P22]=[ω2ω3ω3ω4]=[ω211ω]
P2=[ω211ω][ω211ω]⇒P2=[ω4+1ω2+ωω2+ω1+ω2]≠0
When n = 3
P=[pij]3×3=⎡⎢⎣ω2ω3ω4ω3ω4ω5ω4ω5ω6⎤⎥⎦=⎡⎢⎣ω21ω1ωω2ωω21⎤⎥⎦
P2=⎡⎢⎣ω21ω1ωω2ωω21⎤⎥⎦⎡⎢⎣ω21ω1ωω2ωω21⎤⎥⎦=⎡⎢⎣000000000⎤⎥⎦=0
∴ P2 = 0, when n is a multiple of 3.
P2≠0, when n is not a multiple of 3.
⇒ n = 57 is possible.
∴ n = 55, 58, 56 is not possible.