wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let ω be a complex cube root of unity with ω1 and P=[pij] be a n × n matrix with pij=ωi+j. Then P20, when n=

A
57
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
55
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
58
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
56
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A 55
C 58
D 56
P=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ω2ω3ω4....ωn+1ω3ω4ω5....ωn+2ω4ω5ω6....ωn+3................ωn+1ωn+2......ω2n⎥ ⎥ ⎥ ⎥ ⎥ ⎥
P=ω2ω3ω4.....ωn+1⎢ ⎢ ⎢ ⎢ ⎢ ⎢1ωω2....ωn11ωω2....ωn11ωω2....ωn1................1ωω2...ωn1⎥ ⎥ ⎥ ⎥ ⎥ ⎥
P=ωn(n+3)2⎢ ⎢ ⎢ ⎢ ⎢ ⎢1ωω2....ωn11ωω2....ωn11ωω2....ωn1................1ωω2...ωn1⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Now, P2=ωn2+3n⎢ ⎢ ⎢ ⎢ ⎢ ⎢1ωω2....ωn11ωω2....ωn11ωω2....ωn1................1ωω2...ωn1⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎢ ⎢ ⎢ ⎢ ⎢ ⎢1ωω2....ωn11ωω2....ωn11ωω2....ωn1................1ωω2...ωn1⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Since, P2O
1+ω+ω2+....ωn10
1ωn1ω0
If n is a multiple of 3, then 1ωn=0
So, n must not be a multiple of 3.
Hence, n cannot be 57.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiability in an Interval
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon