The correct options are
A 55
C 58
D 56
P=⎡⎢
⎢
⎢
⎢
⎢
⎢⎣ω2ω3ω4....ωn+1ω3ω4ω5....ωn+2ω4ω5ω6....ωn+3................ωn+1ωn+2......ω2n⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
P=ω2ω3ω4.....ωn+1⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1ωω2....ωn−11ωω2....ωn−11ωω2....ωn−1................1ωω2...ωn−1⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
P=ωn(n+3)2⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1ωω2....ωn−11ωω2....ωn−11ωω2....ωn−1................1ωω2...ωn−1⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Now, P2=ωn2+3n⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1ωω2....ωn−11ωω2....ωn−11ωω2....ωn−1................1ωω2...ωn−1⎤⎥
⎥
⎥
⎥
⎥
⎥⎦⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1ωω2....ωn−11ωω2....ωn−11ωω2....ωn−1................1ωω2...ωn−1⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Since, P2≠O
⇒1+ω+ω2+....ωn−1≠0
⇒1−ωn1−ω≠0
If n is a multiple of 3, then 1−ωn=0
So, n must not be a multiple of 3.
Hence, n cannot be 57.