wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let ω being cube root of unity, then if x=a+b,y=aω+bω2,aω2+bω. Then show that x2+y2+z2=6ab and x3+y3+z3=3(a3+b3).

Open in App
Solution

Given x=a+b,y=aω+bω2,z=aω2+bω.
Now x2+y2+z2
=(a2+2ab+b2)+(a2w2+2abω3+b2ω4)+(a2ω4+2abω3+b2ω2)
=(a2+2ab+b2)+(a2w2+2ab+b2ω)+(a2ω+2ab+b2ω2) [Since ω3=1]
=a2(1+ω+ω2)+6ab+b2(1+ω+ω2)
=6ab.[ 1+ω+ω2=0]
Now
x3+y3+z3
=(a3+3a2b+3ab2+b3)+(a3ω3+3ab2ω4+3ab2ω5+b3ω6)+(a3ω6+3a2bω5+3ab2ω4+b3ω3)
=(a3+3a2b+3ab2+b3)+(a3+3ab2ω+3ab2ω2+b3)+(a3+3a2bω2+3ab2ω+b3) [Since ω3=1]
=3(a3+b3)+3a2b(a+ω+ω2)+3ab2(1+ω+ω2)
=3(a3+b3). [Since 1+ω+ω2=0]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Domestic Electric Circuits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon