|a+bω+cω2|2
=(a+bω+cω2)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(a+bω+cω2)
=(a+bω+cω2)(a+bω2+cω)
=(a2+abω2+acω+abω+b2ω3+ bcω2+acω2+bcω4+c2ω3)
=(a2+ω3(b2+c2)+ab(ω2+ω)+ac(ω2+ω)+bc(ω2+ω4))
=a2+b2+c2−ab−ac−bc
=12[(a−b)2+(b−c)2+(c−a)2]
Let a>b>c⇒|a–b|≥1,|b–c|≥1,|a–c|≥2
≥12[1+1+4]
So, minimum of set |a+bω+cω2|2=3