Let one root of the equation x2+ℓx+m=0 is square of other root. If m∈R then
The correct option is A ℓ∈(−∞,14]∪{1}
Let a root of the quadratic equation x2+ℓx+m=0 be α.
⇒ another root is α2.
Now, α+α2=−l-------(1)
α⋅α2=m
⇒α3=m
⇒α=m13
From (1),
m23+m13=−l
m23+m13+l=0
It is a quadratic equation m13
Since, m∈R
So, Δ=(1)2−4(1)(l)≥0
⇒4l−1≥0
⇒l≤14
Therefore, l∈(−∞,14)∪{1}