The correct option is C 8:3
Let the coordinates of vertices be
O=(0,0)P=(a,0)Q=(a,a)R=(0,a)
Now, the coordinates of M and N are
M=(a+a2,0+a2)=(a,a2)N=(a2,a)
Therefore, the area of △OMN
=12∣∣∣x1x2x3x1y1y2y3y1∣∣∣=12∣∣
∣
∣∣0aa200a2a0∣∣
∣
∣∣=12∣∣∣0+(a2−a24)+0∣∣∣=3a28 sq. units
Area of the square is a2 sq. units.
Hence, the required ratio is 8:3