wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let ¯¯bz+b¯¯¯z=c,b0, be a line in the complex plane, where ¯¯b is the complex conjugate of b. If a point z1 is the reflection of a point z2 through the line, then ¯¯¯¯¯z1b+z2¯¯b=

A
4c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B c
The given line is ¯¯bz+b¯¯¯z=c ...(1)

Let A(z1) be a reflection of B(z2) in the line (1)

Let P(z) be any point on the line (1). We have,

AP=BP|AP|2=|BP|2|zz1|2=|zz2|2

(zz1)(¯¯¯z¯¯¯¯¯z1)=(zz2)(¯¯¯z¯¯¯¯¯z2)

(¯¯¯¯¯z2¯¯¯¯¯z1)z+(z2z1)¯¯¯z+z1¯¯¯zz2¯¯¯¯¯z2=0 ...(2)

Since (1) and (2) represents the same line, we get

¯¯b¯¯¯¯¯z2¯¯¯¯¯z1=bz2z1=cz1¯¯¯¯¯z1z2¯¯¯¯¯z2=k (say)

k(¯¯¯¯¯z2¯¯¯¯¯z1)=¯¯b,k(z2z1)=b,k(z1¯¯¯¯¯z1z2¯¯¯¯¯z2)=c

Now ¯¯¯¯¯z1b+z2¯¯b=¯¯¯¯¯z1(k(z2z1))+z2(k(¯¯¯¯¯z2¯¯¯¯¯z1))

=k(¯¯¯¯¯z1z2z1¯¯¯¯¯z1+z2¯¯¯¯¯z2z2¯¯¯¯¯z1)

=k(z2¯¯¯¯¯z2z1¯¯¯¯¯z1)=c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Rotation concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon