Let ¯¯¯x, M and σ2 be respectively the mean, mode and variance of n observations x1,x2,.....,xn and di=−x1−a,i=1,2,.....,n, where a is any number.
Statement I : Variance of d1,d1,.....,dn is σ2
Statement II : Mean and mode of d1,d2,.....,dn are −¯¯¯x−a and −M−a, respectively
Mean of xi 's =¯¯¯x=x1+x2+.....+xnn
Mean of di 's =(−x1−a)+(−x2−a)+.....+(−xn−a)n=−(x1+x2+.....+xn)−ann=−¯¯¯x−a
Mode of xi 's is M
Clearly, Mode of d′is will be −M−a. .
Variance of x′is=σ2=∑ni=1(xi−¯¯¯x)2n
Variance of d′is=∑ni=1{−xi−a−(−¯¯¯x−a)}2n=∑ni=1{−(xi−¯¯¯x)}2n=σ2