wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let a=(2+sinθ)^i+cosθ^j+sin2θ^k, b=sin(θ+2π3)^i+cos(θ+2π3)^j+sin(2θ+4π3)^k and c=sin(θ2π3)^i+cos(θ2π3)^j+sin(2θ4π3)^k be three vectors where θ(0,π2). The maximum volume of the tetrahedron whose coterminous edges are given by the vectors 2b×c,3c×a and a×4b is

Open in App
Solution

[a b c]=∣ ∣ ∣ ∣ ∣2+sinθcosθsin2θsin(θ+2π3)cos(θ+2π3)sin(2θ+4π3)sin(θ2π3)cos(θ2π3)sin(2θ4π3)∣ ∣ ∣ ∣ ∣

R1R1+R2+R3,=∣ ∣ ∣ ∣ ∣ ∣ ∣2+sinθ+2sinθcos2π3cosθ+2cosθcos2π3sin2θ+2sin2θcos4π3sin(θ+2π3)cos(θ+2π3)sin(2θ+4π3)sin(θ2π3)cos(θ2π3)sin(2θ4π3)∣ ∣ ∣ ∣ ∣ ∣ ∣

=∣ ∣ ∣ ∣ ∣200sin(θ+2π3)cos(θ+2π3)sin(2θ+4π3)sin(θ2π3)cos(θ2π3)sin(2θ4π3)∣ ∣ ∣ ∣ ∣

=2[cos(θ+2π3)sin(2θ4π3)sin(2θ+4π3)cos(θ2π3)]=sin(3θ2π3)sin(2πθ)sin(3θ+2π3)sin(θ+2π)=sin(3θ2π3)sin(3θ+2π3)=(2cos3θsin2π3)=3cos3θ
The maximum value occurs when 3θ=πθ=π3
[a b c]max=3

Required volume
=16[2b×c 3c×a a×4b]=16×24[b×c c×a a×b]=4[a b c]2

Maximum volume of the tetrahedron
=4×3=12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Scalar Triple Product
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon