Let →a and →b are vectors such that |→a+→b|=√29 and →a×(2^i+3^j+4^k)=(2^i+3^j+4^k)×→b then (→a+→b).(−7^i+2^j+3^k)=
±4
→a×(2^i+3^j+4^k)=(2^i+3^j+4^k)×→b
⇒(→a+→b) is parallel to (2^i+3^j+4^k)
⇒→a+→b=λ(2^i+3^j+4^k)
⇒|→a+→b|=λ|2^i+3^j+4^k|
⇒√29=λ(±√29)⇒λ=±1
∴→a+→b=±(2^i+3^j+4^k)
⇒±(2^i+3^j+4^k).(−7^i+2^j+3^k)=±4