The correct option is C If →u=^a−(^a⋅^b)^b and →v=^a×^b, then ∣∣→u∣∣=∣∣→v∣∣
For any vector →r,
→r=(→r⋅^i)^i+(→r⋅^j)^j+(→r⋅^k)^k
Put →r=(→a×→b)
Hence, →a×→b=[→a →b ^i]^i+[→a →b ^j]^j+[→a →b ^k]^k
Let →a=(→a⋅^i)^i+(→a⋅^j)^j+(→a⋅^k)^k
→b=(→b⋅^i)^i+(→b⋅^j)^j+(→b⋅^k)^k
From above equations, we get
→a⋅→b=(→a⋅^i)(→b⋅^i)+(→a⋅^j)(→b⋅^j)+(→a⋅^k)(→b⋅^k)
→u=^a−(^a⋅^b)^b∣∣→u∣∣2=∣∣^a−(^a⋅^b)^b∣∣2=|^a|2+∣∣(^a⋅^b)^b∣∣2−2(^a⋅^b)2=1+1⋅1⋅cos2θ−2cos2θ=sin2θ∴|→u|=sinθ
∣∣→v∣∣=∣∣^a×^b∣∣=|^a|∣∣^b∣∣sinθ=sinθ=∣∣→u∣∣
→c+→d=(→a+→b)×(→a×→b)
=((→a+→b)⋅→b)→a−((→a+→b)⋅→a)→b=(→a⋅→b+∣∣∣→b∣∣∣2)→a−(∣∣→a∣∣2+→b⋅→a)→b≠→0
[ As if →c+→d=→0, then →a and →b will become collinear. ]